Uniaxial cyclic stretch enhances osteogenic differentiation of OPLL-derived primary cells via YAP-Wnt/β-catenin axis

Author:

Zhu Z, ,Tang T,He H,Wang F,Chen H,Chen G,Zhou J,Liu S,Wang J,Tian W,Chen D,Wu X,Liu X,Zhou Z,Liu S

Abstract

The pathogenesis of posterior longitudinal ligament ossification (OPLL) remains inadequately understood. Mechanical stimulation is one of the important pathogenic factors in OPLL. As one of the mechanical stimulation transduction signals, the yes-associated protein (YAP) interacts with the Wnt/β-catenin signalling pathway, which plays an important role in osteogenic differentiation. This study aimed to demonstrate the role of YAP-Wnt/β-catenin axis in cell differentiation induced by mechanical stress. Primary cells extracted from posterior longitudinal ligament tissues from OPLL or non-OPLL patients were subjected to sinusoidal uniaxial cyclic stretch (5 %, 0.5 Hz, 3 d). The expression of runt-related transcription factor 2, collagen I, osterix, osteocalcin and alkaline phosphatase were compared between the static and the experimental groups. In addition, the cytoskeleton was detected using phalloidin staining while YAP phosphorylation states and nuclear location were identified using immunofluorescence. The results showed that mechanical stretching loading increased the expression of osteogenic genes and proteins in the OPLL group, while it had no significant effect on the control group. When OPLL cells were stretched, YAP exhibited an obvious nuclear translocation and the Wnt/β-catenin pathway was activated. Knocking down YAP or β-catenin could weaken the impact upon osteogenic differentiation induced by mechanical stimulation. YAP-mediated mechanical stimulation promoted osteogenic differentiation of OPLL cells through Wnt/β-catenin pathway and this progress was independent of the Hippo pathway.

Publisher

European Cells and Materials

Subject

Pathology and Forensic Medicine,Drug Discovery,Pharmaceutical Science,Molecular Medicine,Pharmacology,Molecular Medicine,Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics,Physical and Theoretical Chemistry,Condensed Matter Physics,Molecular Biology,Biophysics,Plant Science,Molecular Biology,Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology,Agronomy and Crop Science,General Medicine,Physiology,Cellular and Molecular Neuroscience,Psychiatry and Mental health,Molecular Biology,Cell Biology,Developmental Biology,Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3