New quantitative automated model to simulate bacterial dissemination in human tissue during irrigation of contaminated wounds

Author:

Brochhausen C, ,Froschermeier F,Alt V,Pfeifer C,Mayr A,Weiss I,Babel M,Siegmund H,Kerschbaum M

Abstract

This study presents a simple and cost-effective model using microparticles to simulate the bacterial distribution pattern in soft tissue after low- and high-pressure irrigation. Silica coated iron microparticles [comparable diameter (1 µm) and weight (0.8333 pg) to Staphylococcus aureus] were applied to the surface of twenty fresh human muscle tissue samples in two amputated lower legs. Particle dissemination into deep tissue layers as an undesired side effect was investigated in four measuring fields as positive control (PC) as well as after performing pulsatile high-pressure (HP, 8 measuring fields) and low-pressure flushing (LP, 8 measuring fields). Five biopsies were taken out of each measuring field to get a total number of 100 biopsies. After histological and digital image processing, the specimens were analysed, and all incomplete sections were excluded. A special detection algorithm was parameterised using the open source bioimage analysis software QuPath. The application of this detection algorithm enabled automated counting and detection of the particles with a sensitivity of 95 % compared to manual counts. Statistical analysis revealed significant differences (p < 0.05) in our three different sample groups: HP (M = 1608, S = 302), LP (M = 2176, SD = 609) and PC (M = 4011, SD = 686). While both HP and LP flushing techniques are able to reduce the number of bacteria, a higher effectiveness is shown for HP irrigation. Nevertheless, a challenge for the validity of the study is the use of dead tissue and therefore a possible negative influence of high-pressure irrigation on tissue healing and further dispersion of particles cannot be evaluated.

Publisher

European Cells and Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3