Balancing biological and biomechanical performance in intervertebral disc repair: a systematic review of injectable cell delivery biomaterials

Author:

Panebianco CJ, ,Meyers JH,Gansau J,Hom WW,Iatridis JC

Abstract

Discogenic back pain is a common condition without approved intervertebral disc (IVD) repair therapies. Cell delivery using injectable biomaterial carriers offers promise to restore disc height and biomechanical function, while providing a functional niche for delivered cells to repair degenerated tissues. This systematic review advances the injectable IVD cell delivery biomaterials field by characterising its current state and identifying themes of promising strategies. Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) guidelines were used to screen the literature and 183 manuscripts met the inclusion criteria. Cellular and biomaterial inputs, and biological and biomechanical outcomes were extracted from each study. Most identified studies targeted nucleus pulposus (NP) repair. No consensus exists on cell type or biomaterial carrier, yet most common strategies used mesenchymal stem cell (MSC) delivery with interpenetrating network/co-polymeric (IPN/CoP) biomaterials composed of natural biomaterials. All studies reported biological outcomes with about half the studies reporting biomechanical outcomes. Since the IVD is a load-bearing tissue, studies reporting compressive and shear moduli were analysed and two major themes were found. First, a competitive balance, or ‘seesaw’ effect, between biomechanical and biological performance was observed. Formulations with higher moduli had inferior cellular performance, and vice versa. Second, several low-modulus biomaterials had favourable biological performance and matured throughout culture duration with enhanced extracellular matrix synthesis and biomechanical moduli. Findings identify an opportunity to develop next-generation biomaterials that provide high initial biomechanical competence to stabilise and repair damaged IVDs with a capacity to promote cell function for long-term healing.

Publisher

European Cells and Materials

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3