Affiliation:
1. School of Sport, Exercise & Rehabilitation Sciences University of Birmingham Birmingham UK
Abstract
AbstractDue to Achilles tendon compliance, passive ankle stiffness is insufficient to stabilise the body when standing. This results in ‘paradoxical’ muscle movement, whereby calf muscles tend to shorten during forward body sway. Natural variation in stiffness may affect this movement. This may have consequences for postural control, with compliant ankles placing greater reliance upon active neural control rather than stretch reflexes. Previous research also suggests ageing reduces ankle stiffness, possibly contributing to reduced postural stability. Here we determine the relationship between ankle stiffness and calf muscle movement during standing, and whether this is associated with postural stability or age. Passive ankle stiffness was measured during quiet stance in 40 healthy volunteers ranging from 18 to 88 years of age. Medial gastrocnemius muscle length was also recorded using ultrasound. We found a significant inverse relationship between ankle stiffness and paradoxical muscle movement, that is, more compliant ankles were associated with greater muscle shortening during forward sway (r ≥ 0.33). This was seen during both quiet stance as well as voluntary sway. However, we found no significant effects of age upon stiffness, paradoxical motion or postural sway. Furthermore, neither paradoxical muscle motion nor ankle stiffness was associated with postural sway. These results show that natural variation in ankle stiffness alters the extent of paradoxical calf muscle movement during stance. However, the absence of a clear relationship to postural sway suggests that neural control mechanisms are more than capable of compensating for a lack of inherent joint stiffness.
Funder
Biotechnology and Biological Sciences Research Council
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献