The medullary serotonergic centres involved in cardiorespiratory control are disrupted by fetal growth restriction

Author:

Ahmadzadeh Elham12,Dudink Ingrid12ORCID,Walker David W.3,Sutherland Amy E.12,Pham Yen12,Stojanovska Vanesa12ORCID,Polglase Graeme R.12,Miller Suzanne L.12ORCID,Allison Beth J.12

Affiliation:

1. The Ritchie Centre Hudson Institute of Medical Research Clayton Victoria Australia

2. Department of Obstetrics and Gynaecology Monash University Clayton Victoria Australia

3. School of Health and Biomedical Sciences RMIT University Bundoora Victoria Australia

Abstract

AbstractFetal growth restriction (FGR) is associated with cardiovascular and respiratory complications after birth and beyond. Despite research showing a range of neurological changes following FGR, little is known about how FGR affects the brainstem cardiorespiratory control centres. The primary neurons that release serotonin reside in the brainstem cardiorespiratory control centres and may be affected by FGR. At two time points in the last trimester of sheep brain development, 110 and 127 days of gestation (0.74 and 0.86 of gestation), we assessed histopathological alterations in the brainstem cardiorespiratory control centres of the pons and medulla in early‐onset FGRversuscontrol fetal sheep. The FGR cohort were hypoxaemic and asymmetrically growth restricted. Compared to the controls, the brainstem of FGR fetuses exhibited signs of neuropathology, including elevated cell death and reduced cell proliferation, grey and white matter deficits, and evidence of oxidative stress and neuroinflammation. FGR brainstem pathology was predominantly observed in the medullary raphé nuclei, hypoglossal nucleus, nucleus ambiguous, solitary tract and nucleus of the solitary tract. The FGR groups showed imbalanced brainstem serotonin and serotonin 1A receptor abundance in the medullary raphé nuclei, despite evidence of increased serotonin staining within vascular regions of placentomes collected from FGR fetuses. Our findings demonstrate both early and adaptive brainstem neuropathology in response to placental insufficiency.imageKey pointsEarly‐onset fetal growth restriction (FGR) was induced in fetal sheep, resulting in chronic fetal hypoxaemia.Growth‐restricted fetuses exhibit persistent neuropathology in brainstem nuclei, characterised by disrupted cell proliferation and reduced neuronal cell number within critical centres responsible for the regulation of cardiovascular and respiratory functions. Elevated brainstem inflammation and oxidative stress suggest potential mechanisms contributing to the observed neuropathological changes.Both placental and brainstem levels of 5‐HT were found to be impaired following FGR.

Funder

National Health and Medical Research Council

Monash University

Publisher

Wiley

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3