Computational modelling of mouse atrio ventricular node action potential and automaticity

Author:

Bartolucci Chiara1ORCID,Mesirca Pietro23,Ricci Eugenio1ORCID,Sales‐Bellés Clara4ORCID,Torre Eleonora23ORCID,Louradour Julien23ORCID,Mangoni Matteo Elia23ORCID,Severi Stefano1ORCID

Affiliation:

1. Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering ‘Guglielmo Marconi,’ University of Bologna Cesena Italy

2. Institut de Génomique Fonctionnelle Université de Montpellier, CNRS, INSERM Montpellier France

3. LabEx Ion Channels Science and Therapeutics (ICST) Montpellier France

4. BSICoS group, I3A Institute University of Zaragoza, IIS Aragón Zaragoza Spain

Abstract

AbstractThe atrioventricular node (AVN) is a crucial component of the cardiac conduction system. Despite its pivotal role in regulating the transmission of electrical signals between atria and ventricles, a comprehensive understanding of the cellular electrophysiological mechanisms governing AVN function has remained elusive. This paper presents a detailed computational model of mouse AVN cell action potential (AP). Our model builds upon previous work and introduces several key refinements, including accurate representation of membrane currents and exchangers, calcium handling, cellular compartmentalization, dynamic update of intracellular ion concentrations, and calcium buffering. We recalibrated and validated the model against existing and unpublished experimental data. In control conditions, our model reproduces the AVN AP experimental features, (e.g. rate = 175 bpm, experimental range [121, 191] bpm). Notably, our study sheds light on the contribution of L‐type calcium currents, through both Cav1.2 and Cav1.3 channels, in AVN cells. The model replicates several experimental observations, including the cessation of firing upon block of Cav1.3 or INa,r current. If block induces a reduction in beating rate of 11%. In summary, this work presents a comprehensive computational model of mouse AVN cell AP, offering a valuable tool for investigating pacemaking mechanisms and simulating the impact of ionic current blockades. By integrating calcium handling and refining formulation of ionic currents, our model advances understanding of this critical component of the cardiac conduction system, providing a platform for future developments in cardiac electrophysiology. imageKey points This paper introduces a comprehensive computational model of mouse atrioventricular node (AVN) cell action potentials (APs). Our model is based on the electrophysiological data from isolated mouse AVN cells and exhibits an action potential and calcium transient that closely match the experimental records. By simulating the effects of blocking specific ionic currents, the model effectively predicts the roles of L‐type Cav1.2 and Cav1.3 channels, T‐type calcium channels, sodium currents (TTX‐sensitive and TTX‐resistant), and the funny current (If) in AVN pacemaking. The study also emphasizes the significance of other ionic currents, including IKr, Ito, IKur, in regulating AP characteristics and cycle length in AVN cells. The model faithfully reproduces the rate dependence of action potentials under pacing, opening the possibility of use in impulse propagation models. The population‐of‐models approach showed the robustness of this new AP model in simulating a wide spectrum of cellular pacemaking in AVN.

Funder

Fondation Leducq

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3