Avalanche burial pathophysiology – a unique combination of hypoxia, hypercapnia and hypothermia

Author:

Strapazzon Giacomo12ORCID,Taboni Anna1ORCID,Dietrichs Erik Sveberg3,Luks Andrew M.4ORCID,Brugger Hermann1ORCID

Affiliation:

1. Institute of Mountain Emergency Medicine Eurac Research Bolzano Italy

2. Department of Medicine – DIMEM University of Padova Padova Italy

3. Institute of Oral Biology University of Oslo Oslo Norway

4. Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine University of Washington Seattle WA USA

Abstract

AbstractFor often unclear reasons, the survival times of critically buried avalanche victims vary widely from minutes to hours. Individuals can survive and sustain organ function if they can breathe under the snow and maintain sufficient delivery of oxygen and efflux of carbon dioxide. We review the physiological responses of humans to critical avalanche burial, a model which shares similarities and differences with apnoea and accidental hypothermia. Within a few minutes of burial, an avalanche victim is exposed to hypoxaemia and hypercapnia, which have important effects on the respiratory and cardiovascular systems and pose a major threat to the central nervous system. As burial time increases, an avalanche victim also develops hypothermia. Despite progressively reduced metabolism, reduced oxygen and increased carbon dioxide tensions may exacerbate the pathophysiological consequences of hypothermia. Hypercapnia seems to be the main cause of cardiovascular instability, which, in turn, is the major reason for reduced cerebral oxygenation despite reductions in cerebral metabolic activity caused by hypothermia. ‘Triple H syndrome’ refers to the interaction of hypoxia, hypercapnia and hypothermia in a buried avalanche victim. Future studies should investigate how the respiratory gases entrapped in the porous snow structure influence the physiological responses of buried individuals and how haemoconcentration, blood viscosity and cell deformability affect blood flow and oxygen delivery. Attention should also be devoted to identifying strategies to prolong avalanche survival by either mitigating hypoxia and hypercapnia or reducing core temperature so that neuroprotection occurs before the onset of cerebral hypoxia. image

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3