Differential splenic responses to hyperoxic breathing at high altitude in Sherpa and lowlanders

Author:

Holmström Pontus K.12ORCID,Harman Taylor S.3,Kalker Anne4,Steiner Bethany2,Hawkins Ella3,Jorgensen Kelsey C.5,Zhu Kimberly T.5,Kunwar Ajaya J.6,Thakur Nilam6,Dhungel Sunil7,Sherpa Nima8,Day Trevor A.9ORCID,Schagatay Erika K.1ORCID,Bigham Abigail W.5,Brutsaert Tom D.2

Affiliation:

1. Department of Health Sciences Mid‐Sweden University Östersund Sweden

2. Department of Exercise Science Syracuse University Syracuse New York USA

3. Department of Anthropology Syracuse University Syracuse New York USA

4. Department of Anesthesiology Radboud Medical Center Nijmegen Netherlands

5. Department of Anthropology University of California Los Angeles California USA

6. Kathmandu Center for Genomics and Research Laboratory Global Hospital, Gwarko Lalitpur Nepal

7. College of Medicine Nepalese Army Institute of Health Sciences Kathmandu Nepal

8. Local collaborator without institutional affiliation

9. Department of Biology Faculty of Science and Technology Mount Royal University Calgary AB Canada

Abstract

AbstractThe human spleen contracts in response to stress‐induced catecholamine secretion, resulting in a temporary rise in haemoglobin concentration ([Hb]). Recent findings highlighted enhanced splenic response to exercise at high altitude in Sherpa, possibly due to a blunted splenic response to hypoxia. To explore the potential blunted splenic contraction in Sherpas at high altitude, we examined changes in spleen volume during hyperoxic breathing, comparing acclimatized Sherpa with acclimatized individuals of lowland ancestry. Our study included 14 non‐Sherpa (7 female) residing at altitude for a mean continuous duration of 3 months and 46 Sherpa (24 female) with an average of 4 years altitude exposure. Participants underwent a hyperoxic breathing test at altitude (4300 m; barrometric pressure = ∼430 torr;  = ∼90 torr). Throughout the test, we measured spleen volume using ultrasonography and monitored oxygen saturation (). During rest, Sherpa exhibited larger spleens (226 ± 70 mL) compared to non‐Sherpa (165 ± 34 mL; P < 0.001; effect size (ES) = 0.95, 95% CI: 0.3–1.6). In response to hyperoxia, non‐Sherpa demonstrated 22 ± 12% increase in spleen size (35 ± 17 mL, 95% CI: 20.7–48.9; P < 0.001; ES = 1.8, 95% CI: 0.93–2.66), while spleen size remained unchanged in Sherpa (−2 ± 13 mL, 95% CI: −2.4 to 7.3; P = 0.640; ES = 0.18, 95% CI: −0.10 to 0.47). Our findings suggest that Sherpa and non‐Sherpas of lowland ancestry exhibit distinct variations in spleen volume during hyperoxia at high altitude, potentially indicating two distinct splenic functions. In Sherpa, this phenomenon may signify a diminished splenic response to altitude‐related hypoxia at rest, potentially contributing to enhanced splenic contractions during physical stress. Conversely, non‐Sherpa experienced a transient increase in spleen size during hyperoxia, indicating an active tonic contraction, which may influence early altitude acclimatization in lowlanders by raising [Hb].

Funder

National Science Foundation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3