Acute and prolonged competing effects of activation history on human motor unit firing rates during contractile impairment and recovery

Author:

Zero Alexander M.1ORCID,Fanous Jacob1,Rice Charles L.12ORCID

Affiliation:

1. School of Kinesiology Faculty of Health Sciences University of Western Ontario London Ontario Canada

2. Department of Anatomy and Cell Biology, Schulich School of Medicine, and Dentistry University of Western Ontario London Ontario Canada

Abstract

AbstractThe purpose of this study was to investigate the effect of inducing post‐activation potentiation (PAP) during prolonged low‐frequency force depression (PLFFD) on motor unit (MU) firing rates. In 10 participants, grouped firing rates of 3027 MUs from the tibialis anterior were recorded with tungsten microelectrodes. Baseline MU firing rates at 25% isometric maximal voluntary contraction (MVC) were ∼14 Hz. A 1 min dorsiflexion MVC reduced torque and maximal MU firing rates (36 Hz) by 49% and 52%, respectively. Following task completion, firing rates at 25% of baseline MVC torque and torque in response to electrically evoked (single twitch, 10 Hz and 50 Hz) stimulation were assessed before and after a 5 s MVC (to induce PAP) every 10 min for 60 min. From 10 to 60 min after task completion, the torque ratios (twitch:50 Hz and 10:50 Hz) were depressed (∼30%) relative to baseline (P < 0.001), indicating PLFFD; and firing rates were higher by ∼15% relative to baseline (P < 0.001). This occurred despite recovery of MVC rates (∼99%) and torque (∼95%) by 10 min (P > 0.3). Inducing PAP during PLFFD increased both low to high torque ratios (twitch and 10:50 Hz) by ∼200% and ∼135%, respectively (P < 0.001) and firing rates were ∼18% lower relative to PLFFD rates (P < 0.001), despite a speeding of evoked contractile properties (P = 0.001). Thus, firing rates appear strongly matched to alterations in torque, rather than contractile speed when modified by contractile history, and lower rates during PAP may be a mechanism to mitigate effects of PLFFD. The effect of activation history on contractile function demonstrates acute compensatory responses of motoneuron output. imageKey points Prolonged low frequency force depression (PLFFD) following a sustained 1 min isometric maximal voluntary contraction causes an increase in submaximal mean motor unit (MU) firing rates. Inducing post‐activation potentiation (PAP) during PLFFD, however, causes a reduction in mean submaximal MU firing rates to a level below those at baseline. The mean firing rate reduction during PAP occurs despite a speeding of evoked contractile properties and thus firing rates are more strongly matched to alterations in torque, rather than contractile speed when modified by various contractile histories. The reductions in firing rates during PAP may mitigate the effects of PLFFD during voluntary contractions. These results demonstrate that firing rates are highly responsive to opposing influences on the contractile state and can make rapid compensatory rate adjustments dependent on the active state of the muscle.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3