Acute adaptation of central and peripheral motor unit features to exercise‐induced fatigue differs with concentric and eccentric loading

Author:

Jones Eleanor J.1ORCID,Guo Yuxiao1,Martinez‐Valdes Eduardo2,Negro Francesco3,Stashuk Daniel W.4,Atherton Philip J.1,Phillips Bethan E.1,Piasecki Mathew1ORCID

Affiliation:

1. Centre of Metabolism, Ageing and Physiology (COMAP), MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre University of Nottingham Nottingham UK

2. Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences University of Birmingham Birmingham UK

3. Department of Clinical and Experimental Sciences Università degli Studi di Brescia Brescia Italy

4. Department of Systems Design Engineering University of Waterloo Waterloo Ontario Canada

Abstract

AbstractForce output of muscle is partly mediated by the adjustment of motor unit (MU) firing rate (FR). Disparities in MU features in response to fatigue may be influenced by contraction type, as concentric (CON) and eccentric (ECC) contractions demand variable amounts of neural input, which alters the response to fatigue. This study aimed to determine the effects of fatigue following CON and ECC loading on MU features of the vastus lateralis (VL). High‐density surface (HD‐sEMG) and intramuscular (iEMG) electromyography were used to record MU potentials (MUPs) from bilateral VLs of 12 young volunteers (six females) during sustained isometric contractions at 25% and 40% of the maximum voluntary contraction (MVC), before and after completing CON and ECC weighted stepping exercise. Multi‐level mixed effects linear regression models were performed with significance assumed as P < 0.05. MVC decreased in both CON and ECC legs post‐exercise (P < 0.0001), as did force steadiness at both 25% and 40% MVC (P < 0.004). MU FR increased in ECC at both contraction levels (P < 0.001) but did not change in CON. FR variability increased in both legs at 25% and 40% MVC following fatigue (P < 0.01). From iEMG measures at 25% MVC, MUP shape did not change (P > 0.1) but neuromuscular junction transmission instability increased in both legs (P < 0.04), and markers of fibre membrane excitability increased following CON only (P = 0.018). These data demonstrate that central and peripheral MU features are altered following exercise‐induced fatigue and differ according to exercise modality. This is important when considering interventional strategies targeting MU function.

Funder

Medical Research Council

Publisher

Wiley

Subject

Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3