Affiliation:
1. George and Anne Ryan Institute for Neuroscience University of Rhode Island Kingston Rhode Island USA
2. Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy University of Rhode Island Kingston Rhode Island USA
3. Interdisciplinary Neuroscience Program University of Rhode Island Kingston Rhode Island USA
4. Northshore University Health System Evanston Illinois USA
Abstract
AbstractCerebral palsy (CP) is caused by a variety of factors that damage the developing central nervous system. Impaired motor control, including muscle stiffness and spasticity, is the hallmark of spastic CP. Rabbits that experience hypoxic‐ischaemic (HI) injury in utero (at 70%–83% gestation) are born with muscle stiffness, hyperreflexia and, as recently discovered, increased 5‐HT in the spinal cord. To determine whether serotonergic modulation of spinal motoneurons (MNs) contributes to motor deficits, we performed ex vivo whole cell patch clamp in neonatal rabbit spinal cord slices at postnatal day (P) 0–5. HI MNs responded to the application of α‐methyl 5‐HT (a 5‐HT1/5‐HT2 receptor agonist) and citalopram (a selective 5‐HT reuptake inhibitor) with increased amplitude and hyperpolarization of persistent inward currents and hyperpolarized threshold voltage for action potentials, whereas control MNs did not exhibit any of these responses. Although 5‐HT similarly modulated MN properties of HI motor‐unaffected and motor‐affected kits, it affected sag/hyperpolarization‐activated cation current (Ih) and spike frequency adaptation only in HI motor‐affected MNs. To further explore the differential sensitivity of MNs to 5‐HT, we performed immunostaining for inhibitory 5‐HT1A receptors in lumbar spinal MNs at P5. Fewer HI MNs expressed the 5‐HT1A receptor compared to age‐matched control MNs. This suggests that HI MNs may lack a normal mechanism of central fatigue, mediated by 5‐HT1A receptors. Altered expression of other 5‐HT receptors (including 5‐HT2) likely also contributes to the robust increase in HI MN excitability. In summary, by directly exciting MNs, the increased concentration of spinal 5‐HT in HI‐affected rabbits can cause MN hyperexcitability, muscle stiffness and spasticity characteristic of CP. Therapeutic strategies that target serotonergic neuromodulation may be beneficial to individuals with CP.
imageKey points
We used whole cell patch clamp electrophysiology to test the responsivity of spinal motoneurons (MNs) from neonatal control and hypoxia‐ischaemia (HI) rabbits to 5‐HT, which is elevated in the spinal cord after prenatal HI injury.
HI rabbit MNs showed a more robust excitatory response to 5‐HT than control rabbit MNs, including hyperpolarization of the persistent inward current and threshold voltage for action potentials.
Although most MN properties of HI motor‐unaffected and motor‐affected kits responded similarly to 5‐HT, 5‐HT caused larger sag/hyperpolarization‐activated cation current (Ih) and altered repetitive firing patterns only in HI motor‐affected MNs.
Immunostaining revealed that fewer lumbar MNs expressed inhibitory 5‐HT1A receptors in HI rabbits compared to controls, which could account for the more robust excitatory response of HI MNs to 5‐HT.
These results suggest that elevated 5‐HT after prenatal HI injury could trigger a cascade of events that lead to muscle stiffness and altered motor unit development.
Funder
National Institute of General Medical Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献