A cogent technique to circumvent the use of (some) ratio measures in physiology

Author:

Carson Richard G.12ORCID

Affiliation:

1. Trinity College Institute of Neuroscience and School of Psychology Trinity College Dublin Dublin 2 Ireland

2. School of Psychology Queen's University Belfast Belfast UK

Abstract

AbstractPhysiologists often express the change in the value of a measurement made on two occasions as a ratio of the initial value. This is usually motivated by an assumption that the absolute change fails to capture the true extent of the alteration that has occurred in attaining the final value – if there is initial variation among individual cases. While it may appear reasonable to use ratios to standardize the magnitude of change in this way, the perils of doing so have been widely documented. Ratios frequently have intractable statistical properties, both when taken in isolation and when analysed using techniques such as regression. A new method of computing a standardized metric of change, based on principal components analysis (PCA), is described. It exploits the collinearity within sets of initial, absolute change and final values. When these sets define variables subjected to PCA, the standardized measure of change is obtained as the product of the loading of absolute change onto the first principal component (PC1) and the eigenvalue of PC1. It is demonstrated that a sample drawn from a population of these standardized measures: approximates a normal distribution (unlike the corresponding ratios); lies within the same range; and preserves the rank order of the ratios. It is also shown that this method can be used to express the magnitude of a physiological response in an experimental condition relative to that obtained in a control condition. imageKey points The intractable statistical properties of ratios and the perils of using ratios to standardize the magnitude of change are well known. A new method of computing a standardized metric, based on principal components analysis (PCA), is described, which exploits the collinearity within sets of initial, absolute change and final values. A sample drawn from a population of these PCA‐derived measures: approximates a normal distribution (unlike the corresponding ratios); lies within the same range as the ratios; and preserves the rank order of the ratios. The method can also be applied to express the magnitude of a physiological response in an experimental condition relative to a control condition.

Publisher

Wiley

Reference61 articles.

1. Principal component analysis

2. Remote sensing of burned areas via PCA, Part 1; centering, scaling and EVD vs SVD;Alexandris N.;Open Geospatial Data, Software and Standards,2017

3. Remote sensing of burned areas via PCA, Part 2: SVD‐based PCA using MODIS and Landsat data;Alexandris N.;Open Geospatial Data, Software and Standards,2017

4. Statistical considerations regarding the use of ratios to adjust data;Allison D. B.;International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity,1995

5. Is the ratio of flow-mediated dilation and shear rate a statistically sound approach to normalization in cross-sectional studies on endothelial function?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3