What determines the optimal pharmacological treatment of atrial fibrillation? Insights from in silico trials in 800 virtual atria

Author:

Dasí Albert1ORCID,Pope Michael T.B.23,Wijesurendra Rohan S.24ORCID,Betts Tim R.2,Sachetto Rafael5ORCID,Bueno‐Orovio Alfonso1,Rodriguez Blanca1

Affiliation:

1. Department of Computer Science University of Oxford Oxford UK

2. Department of Cardiology Oxford University Hospitals NHS Foundation Trust Oxford UK

3. Department for Human Development and Health University of Southampton Southampton UK

4. Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine University of Oxford Oxford UK

5. Departamento de Ciência da Computação Universidade Federal de São João del‐Rei São João del‐Rei Brazil

Abstract

AbstractThe best pharmacological treatment for each atrial fibrillation (AF) patient is unclear. We aim to exploit AF simulations in 800 virtual atria to identify key patient characteristics that guide the optimal selection of anti‐arrhythmic drugs. The virtual cohort considered variability in electrophysiology and low voltage areas (LVA) and was developed and validated against experimental and clinical data from ionic currents to ECG. AF sustained in 494 (62%) atria, with large inward rectifier K+ current (IK1) and Na+/K+ pump (INaK) densities (IK1 0.11 ± 0.03 vs. 0.07 ± 0.03 S mF–1; INaK 0.68 ± 0.15 vs. 0.38 ± 26 S mF–1; sustained vs. un‐sustained AF). In severely remodelled left atrium, with LVA extensions of more than 40% in the posterior wall, higher IK1 (median density 0.12 ± 0.02 S mF–1) was required for AF maintenance, and rotors localized in healthy right atrium. For lower LVA extensions, rotors could also anchor to LVA, in atria presenting short refractoriness (median L‐type Ca2+ current, ICaL, density 0.08 ± 0.03 S mF–1). This atrial refractoriness, modulated by ICaL and fast Na+ current (INa), determined pharmacological treatment success for both small and large LVA. Vernakalant was effective in atria presenting long refractoriness (median ICaL density 0.13 ± 0.05 S mF–1). For short refractoriness, atria with high INa (median density 8.92 ± 2.59 S mF–1) responded more favourably to amiodarone than flecainide, and the opposite was found in atria with low INa (median density 5.33 ± 1.41 S mF–1). In silico drug trials in 800 human atria identify inward currents as critical for optimal stratification of AF patient to pharmacological treatment and, together with the left atrial LVA extension, for accurately phenotyping AF dynamics. imageKey points Atrial fibrillation (AF) maintenance is facilitated by small L‐type Ca2+ current (ICaL) and large inward rectifier K+ current (IK1) and Na+/K+ pump. In severely remodelled left atrium, with low voltage areas (LVA) covering more than 40% of the posterior wall, sustained AF requires higher IK1 and rotors localize in healthy right atrium. For lower LVA extensions, rotors can also anchor to LVA, if the atria present short refractoriness (low ICaL) Vernakalant is effective in atria presenting long refractoriness (high ICaL). For short refractoriness, atria with fast Na+ current (INa) up‐regulation respond more favourably to amiodarone than flecainide, and the opposite is found in atria with low INa. The inward currents (ICaL and INa) are critical for optimal stratification of AF patient to pharmacological treatment and, together with the left atrial LVA extension, for accurately phenotyping AF dynamics.

Funder

British Heart Foundation

National Centre for the Replacement, Refinement and Reduction of Animals in Research

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

Wiley

Subject

Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3