Affiliation:
1. Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Université Laval Département de médecine Québec Canada
Abstract
AbstractMouse models are helpful in unveiling the mechanisms underlying sex disparities in asthma. In comparison to their female counterparts, male mice are hyperresponsive to inhaled methacholine, a cardinal feature of asthma that contributes to its symptoms. The physiological details and the structural underpinnings of this hyperresponsiveness in males are currently unknown. Herein, BALB/c mice were exposed intranasally to either saline or house dust mite once daily for 10 consecutive days to induce experimental asthma. Twenty‐four hours after the last exposure, respiratory mechanics were measured at baseline and after a single dose of inhaled methacholine that was adjusted to trigger the same degree of bronchoconstriction in both sexes (it was twice as high in females). Bronchoalveolar lavages were then collected, and the lungs were processed for histology. House dust mite increased the number of inflammatory cells in bronchoalveolar lavages to the same extent in both sexes (asthma, P = 0.0005; sex, P = 0.96). The methacholine response was also markedly increased by asthma in both sexes (e.g., P = 0.0002 for asthma on the methacholine‐induced bronchoconstriction). However, for a well‐matched bronchoconstriction between sexes, the increase in hysteresivity, an indicator of airway narrowing heterogeneity, was attenuated in males for both control and asthmatic mice (sex, P = 0.002). The content of airway smooth muscle was not affected by asthma but was greater in males (asthma, P = 0.31; sex, P < 0.0001). These results provide further insights regarding an important sex disparity in mouse models of asthma. The increased amount of airway smooth muscle in males might contribute functionally to their greater methacholine response and, possibly, to their decreased propensity for airway narrowing heterogeneity.
Funder
Canadian Institutes of Health Research
Natural Sciences and Engineering Research Council of Canada
Fonds de Recherche du Québec - Santé
Subject
Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献