Acute exercise increases the contact between lipid droplets and mitochondria independently of obesity and type 2 diabetes

Author:

de Almeida Martin Eisemann12ORCID,Ørtenblad Niels1ORCID,Petersen Maria Houborg23,Schjerning Ann‐Sofie Nybøle1,Wentorf Emil Kleis1,Jensen Kurt1,Højlund Kurt2,Nielsen Joachim1ORCID

Affiliation:

1. Department of Sports Science and Clinical Biomechanics, Faculty of Health Sciences University of Southern Denmark Odense Denmark

2. Steno Diabetes Center Odense Odense University Hospital Odense Denmark

3. Department of Clinical Research, Faculty of Health Sciences University of Southern Denmark Odense Denmark

Abstract

AbstractIntramuscular lipid droplets (LDs) and mitochondria are essential organelles in cellular communication and metabolism, supporting local energy demands during muscle contractions. While insulin resistance impacts cellular functions and systems within the skeletal muscle, it remains unclear whether the interaction of LDs and mitochondria is affected by exercise and the role of obesity and type 2 diabetes. By employing transmission electron microscopy (TEM), we aimed to investigate the effects of 1 h of ergometry cycling on LD morphology, subcellular distribution and mitochondrial contact in skeletal muscle fibres of patients with type 2 diabetes and glucose‐tolerant lean and obese controls, matched for equal exercise intensities. Exercise did not change LD volumetric density, numerical density, profile size or subcellular distribution. However, evaluated as the magnitude of inter‐organelle contact, exercise increased the contact between LDs and mitochondria with no differences between the three groups. This effect was most profound in the subsarcolemmal space of type 1 muscle fibres, and here the absolute contact length increased on average from ∼275 to ∼420 nm. Furthermore, the absolute contact length before exercise (ranging from ∼140 to ∼430 nm) was positively associated with the fat oxidation rate during exercise. In conclusion, we showed that acute exercise did not mediate changes in the LD volume fractions, numbers or size but increased the contact between LDs and mitochondria, irrespective of obesity or type 2 diabetes. These data suggest that the increased LD–mitochondria contact with exercise is not disturbed in obesity or type 2 diabetes. imageKey points Type 2 diabetes is associated with altered interactivity between lipid droplets (LDs) and mitochondria in the skeletal muscle. Physical contact between the surface of LDs and the surrounding mitochondrial network is considered favourable for fat oxidation. We show that 1 h of acute exercise increases the length of contact between LDs and mitochondria, irrespective of obesity or type 2 diabetes. This contact length between LDs and mitochondria is not associated with a net decrease in the LD volumetric density after the acute exercise. However, it correlates with the fat oxidation rate during exercise. Our data establish that exercise mediates contact between LDs and the mitochondrial network and that this effect is not impaired in individuals with type 2 diabetes or obesity.

Funder

Syddansk Universitet

Publisher

Wiley

Subject

Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3