Hypoxia‐inducible factor‐1α attenuates renal podocyte injury in male rats in a simulated high‐altitude environment by upregulating Krüppel‐like factor 4 expression

Author:

Xiaoshan Zeng1,Huan Cheng1,Zhilin Gan1,Liwen Mo2,Yan Zeng2,Yue Cheng12ORCID

Affiliation:

1. College of Medicine Southwest Jiaotong University Chengdu PR China

2. Department of Nephrology General Hospital of Western Theater Command of PLA Chengdu PR China

Abstract

AbstractPrevious studies have shown that podocyte injury is involved in the development of proteinuria in rats under hypobaric hypoxia conditions. Prolyl hydroxylase inhibitors (PHIs) may reduce proteinuria. This study aimed to further investigate whether the protective effects of hypoxia‐inducible factor 1α (HIF1α) on podocyte injury induced by hypobaric hypoxia are related to Krüppel‐like factor 4 (KLF4). Rats were housed in a low‐pressure oxygen chamber to simulate a high‐altitude environment (5000 m), and a PHI was intraperitoneally injected. Urinary protein electrophoresis was performed and the morphology of the podocytes was observed by electron microscopy. Rat podocytes were cultured under 1% O2, and siRNA was used to interfere with KLF4 expression. The protein expression levels of HIF1α, KLF4, CD2‐associated protein (CD2AP) and nephrin were determined by western blotting. Compared with those in the experimental group, the rats in the intervention group on day 14 had lower urinary protein levels, increased protein expression levels of CD2AP and nephrin, and reduced podocyte injury. The results of in vitro experiments showed that the protein expression levels of KLF4, CD2AP and nephrin were greater in the PHI intervention group and lower in the HIF1α inhibitors group than in the low‐oxygen group. The protein expression of CD2AP and nephrin in the siKLF4‐transfected podocytes treated with PHI and HIF1α inhibitors did not differ significantly from that in the low‐oxygen group. HIF1α may be involved in reducing progressive high‐altitude proteinuria by regulating KLF4 expression and contributing to the repair of podocyte injury induced by hypobaric hypoxia.

Funder

Science and Technology Department of Sichuan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3