Hypochlorous acid exposure impairs skeletal muscle function and Ca2+ signalling: implications for Duchenne muscular dystrophy pathology

Author:

Lea Thomas A.1ORCID,Panizza Peter M.1,Arthur Peter G.2ORCID,Bakker Anthony J.1,Pinniger Gavin J.1ORCID

Affiliation:

1. School of Human Sciences University of Western Australia Perth Western Australia Australia

2. School of Molecular Sciences University of Western Australia Perth Western Australia Australia

Abstract

AbstractDuchenne muscular dystrophy (DMD) is a fatal X‐linked disease characterised by severe muscle wasting. The mechanisms underlying the DMD pathology likely involve the interaction between inflammation, oxidative stress and impaired Ca2+ signalling. Hypochlorous acid (HOCl) is a highly reactive oxidant produced endogenously via myeloperoxidase; an enzyme secreted by neutrophils that is significantly elevated in dystrophic muscle. Oxidation of Ca2+‐handling proteins by HOCl may impair Ca2+ signalling. This study aimed to determine the effects of HOCl on skeletal muscle function and its potential contribution to the dystrophic pathology. Extensor digitorum longus (EDL), soleus and interosseous muscles were surgically isolated from anaesthetised C57 (wild‐type) and mdx (dystrophic) mice for measurement of ex vivo force production and intracellular Ca2+ concentration. In whole EDL muscle, HOCl (200 μM) significantly decreased maximal force and increased resting muscle tension which was only partially reversible by dithiothreitol. The effects of HOCl (200 μM) on maximal force in slow‐twitch soleus were lower than found in the fast‐twitch EDL muscle. In single interosseous myofibres, HOCl (10 μM) significantly increased resting intracellular Ca2+ concentration and decreased Ca2+ transient amplitude. These effects of HOCl were reduced by the application of tetracaine, Gd3+ or streptomycin, implicating involvement of ryanodine receptors and transient receptor potential channels. These results demonstrate the potent effects of HOCl on skeletal muscle function potentially mediated by HOCl‐induced oxidation to Ca2+ signalling proteins. Hence, HOCl may provide a link between chronic inflammation, oxidative stress and impaired Ca2+ handling that is characteristic of DMD and presents a potential therapeutic target for DMD. imageKey points Duchenne muscular dystrophy is a fatal genetic disease with pathological mechanisms which involve the complex interaction of chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations. Hypochlorous acid can be endogenously produced by neutrophils via the enzyme myeloperoxidase. Both neutrophil and myeloperoxidase activity are increased in dystrophic mice. This study found that hypochlorous acid decreased muscle force production and increased cytosolic Ca2+ concentrations in isolated muscles from wild‐type and dystrophic mice at relatively low concentrations of hypochlorous acid. These results indicate that hypochlorous acid may be key in the Duchenne muscular dystrophy disease pathology and may provide a unifying link between the chronic inflammation, increased reactive oxygen species production and increased cytosolic Ca2+ concentrations observed in Duchenne muscular dystrophy. Hypochlorous acid production may be a potential target for therapeutic treatments of Duchenne muscular dystrophy.

Publisher

Wiley

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3