Affiliation:
1. Department of Neuroscience and Department of Biomedical Engineering Northwestern University Chicago Illinois USA
2. Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA
3. Department of Biological Sciences University of Illinois at Chicago Chicago Illinois USA
Abstract
AbstractOur group previously showed that genetic or pharmacological inhibition of the cystine/glutamate antiporter, system xc−, mitigates excitotoxicity after anoxia by increasing latency to anoxic depolarization, thus attenuating the ischaemic core. Hypoxia, however, which prevails in the ischaemic penumbra, is a condition where neurotransmission is altered, but excitotoxicity is not triggered. The present study employed mild hypoxia to further probe ischaemia‐induced changes in neuronal responsiveness from wild‐type and xCT KO (xCT−/−) mice. Synaptic transmission was monitored in hippocampal slices from both genotypes before, during and after a hypoxic episode. Although wild‐type and xCT−/− slices showed equal suppression of synaptic transmission during hypoxia, mutant slices exhibited a persistent potentiation upon re‐oxygenation, an effect we termed ‘post‐hypoxic long‐term potentiation (LTP)’. Blocking synaptic suppression during hypoxia by antagonizing adenosine A1 receptors did not preclude post‐hypoxic LTP. Further examination of the induction and expression mechanisms of this plasticity revealed that post‐hypoxic LTP was driven by NMDA receptor activation, as well as increased calcium influx, with no change in paired‐pulse facilitation. Hence, the observed phenomenon engaged similar mechanisms as classical LTP. This was a remarkable finding as theta‐burst stimulation‐induced LTP was equivalent between genotypes. Importantly, post‐hypoxic LTP was generated in wild‐type slices pretreated with system xc− inhibitor, S‐4‐carboxyphenylglycine, thereby confirming the antiporter's role in this phenomenon. Collectively, these data indicate that system xc− interference enables neuroplasticity in response to mild hypoxia, and, together with its regulation of cellular damage in the ischaemic core, suggest a role for the antiporter in post‐ischaemic recovery of the penumbra.
Funder
National Science Foundation
National Institutes of Health