Affiliation:
1. Department of Pharmacology and Toxicology, Centre for Molecular Biosciences University of Innsbruck Innsbruck Austria
2. Department of Drug Science, NIS Centre University of Torino Torino Italy
3. Division of Physiology Karl Landsteiner University of Health Sciences Krems Austria
Abstract
AbstractHigh voltage‐gated Ca2+ channels (HVCCs) shape the electrical activity and control hormone release in most endocrine cells. HVCCs are multi‐subunit protein complexes formed by the pore‐forming α1 and the auxiliary β, α2δ and γ subunits. Four genes code for the α2δ isoforms. At the mRNA level, mouse chromaffin cells (MCCs) express predominantly the CACNA2D1 gene coding for the α2δ‐1 isoform. Here we show that α2δ‐1 deletion led to ∼60% reduced HVCC Ca2+ influx with slower inactivation kinetics. Pharmacological dissection showed that HVCC composition remained similar in α2δ‐1−/− MCCs compared to wild‐type (WT), demonstrating that α2δ‐1 exerts similar functional effects on all HVCC isoforms. Consistent with reduced HVCC Ca2+ influx, α2δ‐1−/− MCCs showed reduced spontaneous electrical activity with action potentials (APs) having a shorter half‐maximal duration caused by faster rising and decay slopes. However, the induced electrical activity showed opposite effects with α2δ‐1−/− MCCs displaying significantly higher AP frequency in the tonic firing mode as well as an increase in the number of cells firing AP bursts compared to WT. This gain‐of‐function phenotype was caused by reduced functional activation of Ca2+‐dependent K+ currents. Additionally, despite the reduced HVCC Ca2+ influx, the intracellular Ca2+ transients and vesicle exocytosis or endocytosis were unaltered in α2δ‐1−/− MCCs compared to WT during sustained stimulation. In conclusion, our study shows that α2δ‐1 genetic deletion reduces Ca2+ influx in cultured MCCs but leads to a paradoxical increase in catecholamine secretion due to increased excitability.
imageKey points
Deletion of the α2δ‐1 high voltage‐gated Ca2+ channel (HVCC) subunit reduces mouse chromaffin cell (MCC) Ca2+ influx by ∼60% but causes a paradoxical increase in induced excitability.
MCC intracellular Ca2+ transients are unaffected by the reduced HVCC Ca2+ influx.
Deletion of α2δ‐1 reduces the immediately releasable pool vesicle exocytosis but has no effect on catecholamine (CA) release in response to sustained stimuli.
The increased electrical activity and CA release from MCCs might contribute to the previously reported cardiovascular phenotype of patients carrying α2δ‐1 loss‐of‐function mutations.