Spectral changes in skin blood flow during pressure manipulations or sympathetic stimulation

Author:

Lima Natalia S.1,Tzen Yi‐Ting12,Clifford Philip S.1

Affiliation:

1. Integrative Physiology Laboratory University of Illinois at Chicago Chicago Illinois USA

2. University of Texas Southwestern Medical Center Dallas Texas USA

Abstract

AbstractSkin blood flow is commonly determined by laser Doppler flowmetry (LDF). It has been suggested that pathophysiological conditions can be assessed by analysis of specific frequency domains of the LDF signals. We tested whether physiological stimuli that activate myogenic and neurogenic mechanisms would affect relevant portions of the laser Doppler spectrum. LDF sensors were placed on the right forearm of 14 healthy volunteers for myogenic (six females) and 13 for neurogenic challenge (five females). Myogenic responses were tested by positioning the arm ∼50° above/below heart level. Neurogenic responses were tested by immersing the left hand into an ice slurry with and without topical application of local anaesthetic. Short‐time Fourier analyses were computed over the range of 0.06 to 0.15 Hz for myogenic and 0.02 to 0.06 Hz for neurogenic. No significant differences in spectral density were observed (P = 0.40) in the myogenic range with arm above (7 ± 54 × 10−4 dB) and below heart (7 ± 14 × 10−4 dB). Neurogenic spectral density showed no significant increase from baseline to cold pressor test (0.0017 ± 0.0013 and 0.0038 ± 0.0039 dB; P = 0.087, effect size 0.47). After application of anaesthetic, neurogenic spectral density was unchanged between the baseline and cold pressor test (0.0014 ± 0.0025 and 0.0006 ± 0.0005 dB; P = 0.173). These results suggest that changes in the myogenic and neurogenic spectral density of LDF signals did not fully reflect the skin vascular function activated by pressure manipulation and sympathetic stimulation. Therefore, LDF myogenic and neurogenic spectral density data should be interpreted with caution.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3