Assessment and modelling of the activation‐dependent shift in optimal length of the human soleus muscle in vivo

Author:

Bohm Sebastian12ORCID,Schroll Arno12,Mersmann Falk12,Arampatzis Adamantios12ORCID

Affiliation:

1. Department of Training and Movement Sciences Humboldt‐Universität zu Berlin Berlin Germany

2. Berlin School of Movement Science Humboldt‐Universität zu Berlin Berlin Germany

Abstract

AbstractPrevious in vitro and in situ studies have reported a shift in optimal muscle fibre length for force generation (L0) towards longer length at decreasing activation levels (also referred to as length‐dependent activation), yet the relevance for in vivo human muscle contractions with a variable activation pattern remains largely unclear. By a combination of dynamometry, ultrasound and electromyography (EMG), we experimentally obtained muscle force–fascicle length curves of the human soleus at 100%, 60% and 30% EMGmax levels from 15 participants aiming to investigate activation‐dependent shifts in L0 in vivo. The results showed a significant increase in L0 of 6.5 ± 6.0% from 100% to 60% EMGmax and of 9.1 ± 7.2% from 100% to 30% EMGmax (both P < 0.001), respectively, providing evidence of a moderate in vivo activation dependence of the soleus force–length relationship. Based on the experimental results, an approximation model of an activation‐dependent force–length relationship was defined for each individual separately and for the collective data of all participants, both with sufficiently high accuracy (R2 of 0.899 ± 0.056 and R2 = 0.858). This individual approximation approach and the general approximation model outcome are freely accessible and may be used to integrate activation‐dependent shifts in L0 in experimental and musculoskeletal modelling studies to improve muscle force predictions. imageKey points The phenomenon of the activation‐dependent shift in optimal muscle fibre length for force generation (length‐dependent activation) is poorly understood for human muscle in vivo dynamic contractions. We experimentally observed a moderate shift in optimal fascicle length towards longer length at decreasing electromyographic activity levels for the human soleus muscle in vivo. Based on the experimental results, we developed a freely accessible approximation model that allows the consideration of activation‐dependent shifts in optimal length in future experimental and musculoskeletal modelling studies to improve muscle force predictions.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3