Neuroinflammation and the immune system in hypoxic ischaemic brain injury pathophysiology after cardiac arrest

Author:

Sekhon Mypinder S.1234ORCID,Stukas Sophie245,Hirsch‐Reinshagen Veronica2345,Thiara Sonny14,Schoenthal Tison14,Tymko Michael14,McNagny Kelly M.67,Wellington Cheryl2345,Hoiland Ryan14ORCID

Affiliation:

1. Division of Critical Care Medicine, Department of Medicine Vancouver General Hospital, University of British Columbia Vancouver BC Canada

2. Djavad Mowafaghian Centre for Brain Health University of British Columbia Vancouver BC Canada

3. International Centre for Repair Discoveries University of British Columbia Vancouver BC Canada

4. Collaborative Entity for REsearching BRain Ischemia (CEREBRI) University of British Columbia Vancouver BC Canada

5. Department of Pathology and Laboratory Medicine University of British Columbia Vancouver BC Canada

6. Department of Medical Genetics Faculty of Medicine University of British Columbia Vancouver BC Canada

7. Biomedical Research Centre University of British Columbia Vancouver BC Canada

Abstract

AbstractHypoxic ischaemic brain injury after resuscitation from cardiac arrest is associated with dismal clinical outcomes. To date, most clinical interventions have been geared towards the restoration of cerebral oxygen delivery after resuscitation; however, outcomes in clinical trials are disappointing. Therefore, alternative disease mechanism(s) are likely to be at play, of which the response of the innate immune system to sterile injured tissue in vivo after reperfusion has garnered significant interest. The innate immune system is composed of three pillars: (i) cytokines and signalling molecules; (ii) leucocyte migration and activation; and (iii) the complement cascade. In animal models of hypoxic ischaemic brain injury, pro‐inflammatory cytokines are central to propagation of the response of the innate immune system to cerebral ischaemia–reperfusion. In particular, interleukin‐1 beta and downstream signalling can result in direct neural injury that culminates in cell death, termed pyroptosis. Leucocyte chemotaxis and activation are central to the in vivo response to cerebral ischaemia–reperfusion. Both parenchymal microglial activation and possible infiltration of peripherally circulating monocytes might account for exacerbation of an immunopathological response in humans. Finally, activation of the complement cascade intersects with multiple aspects of the innate immune response by facilitating leucocyte activation, further cytokine release and endothelial activation. To date, large studies of immunomodulatory therapies have not been conducted; however, lessons learned from historical studies using therapeutic hypothermia in humans suggest that quelling an immunopathological response might be efficacious. Future work should delineate the precise pathways involved in vivo in humans to target specific signalling molecules. image

Funder

Canadian Institutes of Health Research

Heart and Stroke Foundation of Canada

Publisher

Wiley

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3