Influence of vanadium content on structure and activity of V2O5–ZrO2–SiO2 catalyst for propane dehydrogenation

Author:

Abstract

In order to create alternative vanadium oxide-supported catalysts for the process of non-oxidative propane dehydrogenation to propylene, we studied the effect of the increased content of vanadium oxide in the V2O5–ZrO2–SiO2 composition on its structure and catalytic properties. Zirconium silicate hydrogel in the form of finished spherical granules with the SiO2 content of more than 50% was prepared by direct sol-gel synthesis from zirconium oxychloride and sodium metasilicate using the droplet coagulation technology. Catalysts were fabricated by impregnation of hydrogel with an aqueous solution of vanadyl sulfate salt, hydrothermal treatment and calcination in air. By using scanning electron microscopy, X-ray diffraction analysis and low-temperature nitrogen adsorption/desorption method, we showed that amorphous samples with a developed mesoporous structure (with the pore diameter of ~6 nm and the specific surface area of ~300 m2 g–1) were formed when the content of the supporting V2O5 on zirconium silicate was 10, 20, 25, and 30 wt.%. In the course of temperature increase in the propane dehydrogenation reaction, the catalyst samples crystallized in the reaction mixture propane–inert gas with the formation of tetragonal zirconia. When the content of V2O5 was 25% or 30%, additional phases of reduced vanadium oxides and traces of the zirconium vanadate phase were formed. After the reaction, the specific surface area of the catalysts decreased significantly and the average pore size of the samples with 25% and 30% V2O5 increased to ~30 nm. The propylene yield reproducibly observed on the samples with 25% and 30% V2O5 was lower than that on the samples with 10% V2O5; however, it remained quite high, which was probably due to the expanded diameter of the pores and the appearance of additional ZrV2O7 sites that are active with respect to the dehydrogenation of light alkane.

Publisher

SHEI Ukrainian State University of Chemical Technology

Subject

Materials Chemistry,General Chemical Engineering,Environmental Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3