Electrochemical hydrogenation, lithiation and sodiation of the GdFe2–xMx and GdMn2–xMx intermetallics

Author:

Abstract

Electrochemical hydrogenation, lithiation and sodiation of the phases GdFe2–xMx and GdMn2–xMx (M=Mn, Co, Ni, Zn, and Mg) and the influence of doping components on electrochemical characteristics of electrode materials on their basis were studied using X-ray powder diffraction method, scanning electron microscopy, energy dispersive X-ray analysis, X-ray fluorescent spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Phase analysis showed a simple correspondence between unit cell parameters of the phases and atomic radii of doping elements. Electrode materials based on GdFe2 and GdMn2 doped with 2 at.% of Co, Ni and Mg demonstrated better hydrogen sorption properties than those doped with Mn and Zn. Corrosion resistance of the doped electrodes was also better than of the binary analogues (e.g. corrosion potential of the GdFe2-based electrode was –0.162 V whereas that of GdFe1.96Ni0.04 was –0.695 V). The capacity parameters were increased in the following ranges: Zn<Mn<Mg<Co<Ni and Zn<Fe<Mg<Co<Ni for GdFe2–xMx and GdMn2–xMx, respectively. After fifty cycles of charge/discharge, we observed the changes in surface morphology and composition of the electrode samples. In the structure of studied Laves type phases with MgCu2-type structure, the most suitable sites for hydrogen atoms are tetrahedral voids 8a. During lithiation and sodiation of the phases, the atoms of the M-component of the structure are replaced by the atoms of lithium, and the atoms of gadolinium are replaced by the atoms of sodium. This difference in interaction is due to the difference in atomic sizes of the atoms. No insertion of lithium or sodium into the structural voids of the phases was observed.

Publisher

SHEI Ukrainian State University of Chemical Technology

Subject

Materials Chemistry,General Chemical Engineering,Environmental Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3