Increase in the count rates of ground-based cosmic-ray detectors caused by the heliomagnetic disturbance on 5 November 2023

Author:

Chilingarian A.ORCID,Karapetyan T.,Sargsyan B.,Zazyan M.,Knapp J.,Walter M.,Rehm T.ORCID

Abstract

Abstract This letter presents a rare physical phenomenon associated with solar activity, manifesting in anomalies within neutron, electron, and gamma-ray fluxes in the atmosphere. Conventionally, the Earth's magnetic-field disturbances reduce cosmic-ray intensity reaching the surface. However, a temporary surge in cosmic-ray flux occurs intermittently known as the magnetospheric effect (ME). Our observations reveal that this effect predominantly induces a count rate increase in particle detectors positioned at middle latitudes on mountaintops. On November 5, 2023, a 2–3% increase in neutron monitors at mountain altitudes and up to 5% increase in thin plastic scintillators registering electrons and gamma rays was observed. This flux escalation coincided with a southward orientation of the interplanetary magnetic field. Importantly, we present, for the first time, the energy spectrum of the Magnetospheric Effect observed at two mountaintops: Aragats and Zugspitze. Simulations of low-energy proton interactions in the terrestrial atmosphere affirm the augmentation of low-energy cosmic rays. Protons, typically restricted by the geomagnetic cutoff, reached the Earth's atmosphere, generating detectable particle showers on the Earth's surface. To sum up, 1) we measure an increase in the count rate of magnetospheric origin using particle detectors located at mountain altitudes and middle latitudes; 2) for the first time, we measured the energy spectra of the particle fluxes during the magnetospheric effect with spectrometers located on Mount Aragats and Zugspitze; 3) particle flux enhancement coincides with the depletion of the horizontal component of the geomagnetic field; 4) we explain why the magnetospheric effect was observed at mountain altitudes and not at sea level.

Funder

Science Committee of the Republic of Armenia

Research Project

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3