Controllability analysis of the small-world network of neural populations

Author:

Liu Xian,Li Ren-Jie,Zhao Yun

Abstract

Abstract Controllability analysis of brain networks is the theoretical foundation for neuromodulation feasibility. This paper presents a new framework for studying controllability of certain brain networks on the basis of neural mass models, the minimum driver node, the linearization technique and a controllability index. Firstly, a WS small-world network of Jansen-Rit's neural populations is established to mathematically model complicated neural dynamics. Secondly, an analytical method of analyzing controllability is built based on the bipartite graph maximum matching algorithm, the linearization technique and the matrix condition number. The bipartite graph maximum matching algorithm is applied to determine the minimum driver node sets for the established network while the matrix condition number is applied to define the controllability index which qualitatively evaluates the degree of the controllability of the established network. Finally, the effectiveness of the proposed analytical method is demonstrated by the influence of important parameters on the controllability and the comparison with an existing method. The proposed framework provides theoretical foundation for the study of neuromodulation feasibility, and the results are expected to lead us to better modulate neurodynamics by optimizing network dynamics or designing optimal stimulation protocols.

Funder

Hebei innovation capability improvement plan project

National Science Foundation of China

Natural Science Foundation of Hebei

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Controllability Analysis of Brain Networks During Rhythmic Propagation;IEEE Transactions on Network Science and Engineering;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3