Abstract
Abstract
In this paper, we study the subtle effect of constraints on the quantum dynamics of a point particle moving on a non-trivial torus knot. The particle is kept on the knot by the constraints, generated by curvature and torsion. In the Geometry-Induced Potential (GIP) approach, the Schrödinger equation for the system yields new results in particle energy eigenvalues and eigenfunctions, in contrast with existing results that ignored curvature and torsion effects. Our results depend on Γ, parameter that characterizes the global features of both the embedding torus and, more interestingly, the knottedness of the path.
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献