Optimal non-Markovian composite search algorithms for spatially correlated targets

Author:

Klimek A.,Netz R. R.

Abstract

Abstract We study the efficiency of a wide class of stochastic non-Markovian search strategies for spatially correlated target distributions. For an uninformed searcher that performs a non-composite random search, a ballistically moving search is optimal for destructible targets, even when the targets are correlated. For an informed searcher that can measure the time elapsed since the last target encounter and performs a composite search consisting of alternating extensive ballistic trajectories and intensive non-Markovian search trajectories, the efficiency can be more than three times higher compared to a ballistic searcher. We optimize the memory function that describes the intensive non-Markovian search motion and find a single-exponential memory function to be optimal. In our extended search model the intensive search mode is activated when the distance between two consecutively found targets in the extensive search mode is smaller than a threshold length called the memory distance d m . We find that a finite value of d m quite generally leads to optimal search efficiency for correlated target distributions.

Funder

Deutsche Forschungsgemeinschaft

ERC

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3