Avoiding electromechanical instability or loss of tension of dielectric elastomer generators with position-controlled cycles for enhanced energy harvesting

Author:

Fan Peng,Zhu Zicai,Lu Tongqing

Abstract

Abstract The maximum energy density of a dielectric elastomer generator (DEG) represents the potential energy harvesting capacity, which is determined by the material failure modes. The maximum energy density and the failure modes of DEGs in a force-controlled energy harvesting cycle have been evaluated. However, the position-controlled energy harvesting cycle that is widely used in DEGs has not been investigated. This paper explores the energy harvesting capacity of DEGs with rigid and flexible connections in a position-controlled cycle. The failure modes in a position-controlled cycle are analyzed and the electromechanical instability of DEGs with rigid and flexible connections is mainly focused on. On this basis, we study the maximum energy density of DEGs with diverse connections under different loading configurations. The results show that, compared with the force-controlled cycle, the position-controlled cycle can enhance the energy harvesting capacity of DEGs due to the avoidance of electromechanical instability or loss of tension. The conclusions and methods can help to evaluate the energy harvesting capacity and provide a safe region for the optimal design of DEGs in a position-controlled cycle.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3