Tunable sharp resonances based on multimode interference in a MIM-ring coupling plasmonic resonator system

Author:

Qi YunpingORCID,Zhang Ting,Zhang Yu,Wang Xiangxian

Abstract

Abstract An asymmetric plasmonic resonator system is composed of two metal-insulator-metal (MIM) waveguides and a ring resonator is proposed. And tunable sharp resonance based on multimode interference in MIM-ring coupling plasmonic resonator system is theoretically and numerically studied. The Fano resonance of the two different physical mechanisms in this paper is explained by using the multimode interference coupled mode theory (MICMT). Results obtained by the theory of MICMT are very well consistent with those from the finite element method (FEM) simulation. For an independent MIM-ring coupling plasmonic resonator system, its Fano resonance is formed by different resonance modes of the same ring resonator interfering with each other. Moreover, the theory of ring resonator explains the red shift which is attributable to the increase of the inner ring radius. For the rectangular and ring hybrid coupling plasmonic resonator system, the electromagnetic waves in the ring resonator and the rectangular resonator interfere with each other, which leads to the Fano resonance. We also studied the sensitivity (S) and figure of merit (FOM) of the rectangular and ring hybrid resonator system as a refractive index sensor up to 1350 nm /RIU and 1543, respectively, which has a certain reference value for the bio-chemical sensors, filters and modulator for large-scale photonic integration.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3