Abstract
Abstract
This paper examines the impact of nonlinear coupling on the synchronization of interconnected oscillators. Various powers of diffusive coupling are explored to introduce nonlinear effects, and the results are contrasted with those of linear diffusive coupling. The study employs three representative chaotic systems, namely, the Lorenz, Rössler, and Hindmarsh-Rose systems. Findings indicate that nonlinear couplings with power below one result in synchronization at lower coupling strengths. Additionally, the critical coupling strength reduces as the coupling power decreases. However, the synchronization region undergoes changes and becomes bounded. Conversely, for powers exceeding one, networks are either unable to synchronize or require higher coupling strengths compared to linear coupling.
Funder
Centre for Nonlinear Systems, Chennai Institute of Technology, India
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献