Density functional study of thermodynamic properties, thermal expansion and lattice thermal conductivity of Fe2VAl in the high-temperature region

Author:

Sk ShamimORCID,Pandey Sudhir K.

Abstract

Abstract Here, we present the phonon calculations for thermodynamic properties, thermal expansion and lattice thermal conductivity of Fe2VAl in the temperature range of and compare them with existing experiment. Phonon dispersion is computed using the finite displacement method and supercell approach. The positive frequencies of all the phonon modes indicate the mechanical stability of the compound. The specific heat at constant volume and Helmholtz free energy are calculated under harmonic approximation, while calculation of thermal expansion is done under quasi-harmonic approximation. Lattice thermal conductivity is calculated using first-principle anharmonic lattice dynamics calculations. The zero-point energy and Debye temperature are computed as and 638 K, respectively. The calculated thermal expansions are found to be and at 300 and 800 K, respectively. A significant deviation between calculated ( ) and experimental ( ) values of are observed at 300 K. But, as the temperature increases, the calculated and experimental come closer with the corresponding values of and at 800 K. The possible reasons for the deviation of are addressed. The temperature dependence of phonon lifetime is computed in order to understand the feature of . The present study suggests that DFT-based phononic calculations provide reasonably good explanations of available experimental phonon-related properties of Fe2VAl in the high-temperature range of .

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3