Quantum algorithm for the covariance matrix preparation and its application

Author:

Ning T.,Yang Y. L.

Abstract

Abstract Performing the eigendecomposition of the covariance matrix of the dataset is of great significance in the field of machine learning. However, classical operations will become time-consuming when involving large data sets. In this paper, in order to address this problem, we design an efficient quantum algorithm to prepare the covariance matrix state by means of quantum amplitude estimation. After that, we research on its application in principal component analysis and Mahalanobis distance calculation. Specifically, we obtain the transformation matrix for quantum principal component analysis based on the singular value estimation algorithm and the amplitude amplification algorithm. Furthermore, we invoke the quantum matrix inversion algorithm to calculate the Mahalanobis distance. The final complexity analysis shows that our proposed algorithms can achieve speedup compared to their classical counterparts under certain conditions.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3