Solitary waves explore the quantum-to-classical transition

Author:

Sreedharan A.,Kuriyattil S.,Choudhury S.,Mukherjee R.,Streltsov A.,Wüster S.

Abstract

Abstract How the classical appearance of our environment arises from the underlying quantum many-body theory is an open fundamental question. We propose that phenomena involved in the quantum-to-classical transition can be probed in collisions of bright solitary waves in Bose-Einstein condensates, where thousands of atoms form a large compound object at ultra cold temperatures. For the experimentally most relevant quasi-1D regime, where integrability is broken through effective three-body interactions, we find that ensembles of solitary waves exhibit complex interplay between phase coherence and entanglement generation in beyond mean-field simulations using the truncated Wigner method: An initial state of two solitons with a well-defined relative phase looses that phase coherence in the ensemble, with its single-particle two-mode density matrix exhibiting similar dynamics as a decohering two-mode superposition. This apparent decoherence is a prerequisite for the formation of entangled superpositions of different atom numbers in a subsequent soliton collision. The necessity for the solitons to first decohere is explained based on the underlying phase-space of the quintic mean-field equation. We show elsewhere that superpositions of different atom numbers later further evolve into spatially entangled solitons. Loss of ensemble phase coherence followed by system internal entanglement generation appear in an unusual order in this closed system, compared to a typical open quantum system.

Funder

MPG-IISER

DST INSPIRE fellowship

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyper-entangling mesoscopic bound states;New Journal of Physics;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3