Athermal jamming vs. glassy dynamics for particles with exponentially decaying repulsive pair interaction potentials with a cutoff

Author:

Wohlleben Nicolas,Schmiedeberg MichaelORCID

Abstract

Abstract We study athermal jamming as well as the thermal glassy dynamics in systems composed of spheres that interact according to repulsive interactions that exponentially decay as a function of distance. As usual, a cutoff is employed in the simulations. While the athermal jamming transition that is determined by trying to remove overlaps is found to depend on the arbitrary and therefore unphysical choice of the cutoff, we do not find any athermal jamming transition or crossover that only relies on the physical decay length. In contrast, the glassy dynamics mainly depends on the decay length. Our findings constitute another demonstration of the fact that the athermal jamming transition is not related to thermal glassy dynamics. In addition, we argue that interactions without sharp physical cutoff should be considered more often as a model system in jamming. The reevaluation of widely used theoretical approaches or methods of analysis in the field of jamming and the task to change them such that they do not depend on unphysical cutoffs will lead to deeper insights into the nature of athermal and thermal jamming.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3