Evolution of the crack patterns in nanostructured films with subsequent wetting and drying cycles

Author:

McIlroy David,Pauchard LudovicORCID

Abstract

Abstract Crack patterns in coatings present various morphologies as a signature of the matter to external stresses. Brittle films generally show a network of connected cracks due to a hierarchical formation process. On the contrary, non-sequential crack growth leads to a different morphology with few junctions. The present work focuses on the evolution of both crack networks under the effect of repeated stresses. The experimental work is performed through porous thin films over subsequent wetting and drying processes. The non-connected network of cracks is investigated through nanostructured films exhibiting compliant and elastic properties. Over repeated stresses, this crack network evolves until it reaches stabilization. The stabilization appears when the cracks stop growing and a shielding effect occurs. This behaviour is compared with a more classical connected network of cracks that do not evolve in the plane under the effect of repeated processes.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3