Occurrence of connected clusters in motility-induced phase-separated states of persistent active particles at zero temperature (a)

Author:

Schmiedeberg M.ORCID

Abstract

Abstract To study the interplay of the formation of clusters of overlapping particles and motility-induced phase separation in the zero temperature limit in two dimensions, we consider a simple model system consisting of a bidisperse mixture of disks that are only subject to a repulsion force in case of overlaps and an active force. The orientation of the disks is chosen randomly in the beginning and does not change anytime during the simulation thus corresponding to an infinite persistence length. Simulations with our model system reveal that clusters of overlapping particles occur in the dense phase of a phase-separated state in case of intermediate values of the ratio of active to repulsive force. However, for smaller activities there are only a few overlaps between the particles in the dense phase and the coexistence region ends at a packing fraction below the onset of the formation of clusters with overlapping particles. For large activities small clusters corresponding to small patches of the dense phase are found that are unstable due to the activity. Finally, the occurrence of connected clusters affects the phase separation. Our findings on how cluster formation and phase separation are related are relevant to many active particle systems as after adding thermal noise our model system corresponds to a system of active Brownian particles that have been intensely studied in recent years. Further extensions by adding friction, inertia, or more complex interactions are possible.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3