Novel small-size seismic metamaterial with ultra-low frequency bandgap for Lamb waves

Author:

Shi NannanORCID,Liu HanORCID,Zhao LiutaoORCID

Abstract

Abstract Seismic metamaterials (SMs) possess bandgap characteristics, enabling effective attenuation of seismic waves within a specific frequency range. However, small-sized SMs typically struggle to achieve a wide low-frequency bandgap. This paper proposes four types of SMs. The dispersion curves of these models were analyzed, and their vibration modes were studied to elucidate the bandgap mechanism. To investigate the influence of structural parameters on the bandgap, geometric variables are analyzed. Subsequently, the spectrum and acceleration time history curves of Lamb waves in a finite SM system are analyzed to verify the bandgap's authenticity. The designed structure exhibits a bandgap ranging from 1.24 Hz to 16.86 Hz, with a relative bandwidth as high as 172.6% and over 96% maximum vibration displacement attenuation of the El Centro seismic wave. The designed SMs effectively cover the 2 Hz seismic peak spectrum that leads to structural damage. They possess ideal relative bandwidth and excellent isolation performance, further advancing the engineering application of SMs.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3