Hidden geometry and dynamics of complex networks: Spin reversal in nanoassemblies with pairwise and triangle-based interactions (a)

Author:

Tadić BosiljkaORCID,Gupte Neelima

Abstract

Abstract Recent studies of networks representing complex systems from the brain to social graphs have revealed their higher-order architecture, which can be described by aggregates of simplexes (triangles, tetrahedrons, and higher cliques). Current research aims at quantifying these hidden geometries by the algebraic topology methods and deep graph theory and understanding the dynamic processes on simplicial complexes. Here, we use the recently introduced model for geometrical self-assembly of cliques to grow nano-networks of triangles and study the field-driven spin reversal processes on them. With the antiferromagnetic interactions between the Ising spins attached to the nodes, this assembly ideally supports the geometric frustration, which is recognized as the origin of some new phenomena in condensed matter physics. In the dynamical model, a gradual switching from the pairwise to triangle-based interactions is controlled by a parameter. Thus, the spin frustration effects on each triangle give way to the mesoscopic ordering conditioned by a complex arrangement of triangles. We show how the balance between these interactions changes the shape of the hysteresis loop. Meanwhile, the fluctuations in the accompanying Barkhausen noise exhibit robust indicators of self-organized criticality, which is induced by the network geometry alone without any magnetic disorder.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3