Study on noise enhancement injection in laser gyroscopes based on random noise variation rates

Author:

Bai Shicai,Ma Jiajun,Xu Yuxin,Gao Hui,Xu Wenzheng,Meng Jun

Abstract

Abstract In the process of injecting random noise into a mechanical vibration laser gyroscope, the amplitude of the injected noise decays significantly as the noise frequency increases. To address this phenomenon, theoretical research was conducted on the transfer function of random noise in a mechanical vibration laser gyroscope, and a transfer function of random noise enhancement injection efficiency was established, which is related to the damping coefficient and resonant frequency. A method for enhancing random noise injection efficiency based on the rate of random noise level variation was proposed, and a circuit system for random noise enhancement injection in mechanical vibration laser gyroscopes was designed. The results showed that compared with the original random noise injection technology, random noise enhancement injection technology can effectively suppress the serious attenuation of high-frequency random noise amplitude, increase random noise injection efficiency by about 41.27%, reduce the random walk of the laser gyroscope's angle by about 17.73%, and improve its accuracy by about 27.02%. Random noise enhancement injection technology provides an important reference for improving the performance of mechanical vibration laser gyroscopes.

Funder

Department Youth Science and Technology Talents Growth Project of China

National Natural Science Foundation of China

Guizhou University

Doctoral Foundation of Guizhou University of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3