Collision frequency measurement from optical reflectivity of laser indirect-driven CH/Al/diamond

Author:

Zhang Zhiyu,Hou Yong,Zhao Yang,Zhang Jiyan,Xu Tao,Jing Longfei,Qing Bo,Xiong Gang,Lv Min,Wang Feng,Du Huabing,Zhan Xiayu,Song Tianming,Huang Chengwu,Zhu Tuo,Zhang Yuxue,Zhao Yan,Zhang Lu,Li Liling,Yang Jiamin

Abstract

Abstract A collision frequency measurement from the optical reflectivity of laser indirect-driven CH/Al/diamond on the SG-10kJ laser facility is presented. The optical reflectivity and the Al/diamond interface velocity were measured simultaneously by the velocity interferometer. The aluminum rear surface density was deduced from the interface velocity by analyzing the wave interaction. The deduced sample state was compared with the simulation and quite good agreement was found. The electron collision frequency was deduced by fitting the sample state to the optical reflectivity, and it is found that the experimental collision frequency agrees with a semi-empirical result within the error bar, but is larger than the simulated result based on the average-atom model with the hypernetted chain approximation.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3