Dead or alive: Distinguishing active from passive particles using supervised learning (a)

Author:

Janzen Giulia,Smeets Xander L. J. A.,Debets Vincent E.,Luo Chengjie,Storm Cornelis,Janssen Liesbeth M. C.,Ciarella Simone

Abstract

Abstract A longstanding open question in the field of dense disordered matter is how precisely structure and dynamics are related to each other. With the advent of machine learning, it has become possible to agnostically predict the dynamic propensity of a particle in a dense liquid based on its local structural environment. Thus far, however, these machine-learning studies have focused almost exclusively on simple liquids composed of passive particles. Here we consider a mixture of both passive and active (i.e., self-propelled) Brownian particles, with the aim to identify the active particles from minimal local structural information. We compare a state-of-the-art machine learning approach for passive systems with a new method we develop based on Voronoi tessellation. Both methods accurately identify the active particles based on their structural properties at high activity and low concentrations of active particles. Our Voronoi method is, however, substantially faster to train and deploy because it requires fewer, and easy to compute, input features. Notably, both become ineffective when the activity is low, suggesting a fundamentally different structural signature for dynamic propensity and non-equilibrium activity. Ultimately, these efforts might also find relevance in the context of biological active glasses such as confluent cell layers, where subtle changes in the microstructure can hint at pathological changes in cell dynamics.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3