Post-treatment Visual Acuity Prediction Using Deep Learning in Age-related Macular Degeneration

Author:

Kim Najung,Kim Hyung Chan,Chung Hyewon,Lee Hyungwoo

Abstract

Purpose: To develop a deep learning model to predict visual acuity (VA) outcomes after 12 months of anti-vascular endothelial growth factor (anti-VEGF) treatment.Methods: A total of 330 treatment-naive eyes of neovascular age-related macular degeneration patients, who underwent anti-VEGF therapy between 2007 and 2020 at Konkuk University medical center, were included. The network was trained using VA at baseline, VA after three loading doses of anti-VEGF, and treatment regimen data. It was also trained using 12,300 augmented optical coherence tomography (OCT) B-scan images at baseline and after three loading doses of anti-VEGF. We generated five deep learning models using sequentially input data (VA and OCT B-scan images at baseline and after three loading doses, and treatment regimen). Prediction of VA at 12 months was performed using deep learning algorithms, such as convolutional neural network and multilayer perceptron. The outcomes were dichotomized based on whether the decremental change in VA during the 12 months of treatment was more or less than logarithm of the minimum angle of resolution 0.3. Predictive efficiency was assessed by comparing the performance of deep learning models.Results: The best performing model was trained using input data, including VA at baseline and after three loading doses, treatment regimen, and OCT B-scan images at baseline and after three loading doses. The decremental outcome in VA after 12 months of anti-VEGF treatment was predicted as an area under the curve (AUC) of 0.79. The addition of OCT images at baseline and after three loading doses as input data improved the AUC, sensitivity, and negative predictive value (AUC 0.74-0.79, 0.58-0.86, and 0.90-0.95, respectively).Conclusions: Our deep learning model showed relatively good performance in classifying good or poor post-treatment VA based on combined clinical information including numerical and image data.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

Korean Ophthalmological Society

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3