Kredi Temerrüt Riskini Tahmin Etmede Makine Öğrenme Algoritmalarının Karşılaştırılması

Author:

TÜTÜNCÜ Toprak Enes1ORCID,GÜRSAKAL Sevda1ORCID

Affiliation:

1. Bursa Uludağ Üniversitesi

Abstract

Bankalar ve çeşitli finans kuruluşları tarafından karşılanan kredilerin, müşteri tarafından geri ödenememesi hem kredi veren kuruluşun sermaye kaybını hem de genel ekonomide oluşabilecek çeşitli risk faktörlerini beraberinde getirmektedir. Bu süreçte, oldukça kritik öneme sahip olan kredi riskinin doğru yönetilebilmesi ve uluslararası finans istikrarının sağlanması için Basel Komitesi ve BDDK (Bankacılık Düzenleme ve Denetleme Kurumu) gibi finans denetimi kuruluşları, kredi veren kurumların kredi verme karar aşamasında çeşitli regülasyon politikaları belirlemektedir. Ayrıca, kredi veren kurumlar analitik risk birimleri aracılığıyla kredi değerlendirme modelleri geliştirerek, müşterilere ait kredi risk skorunu hesaplamaktadır. Bu çalışmada makine öğrenmesi yöntemiyle kredi skorlama sistemlerinde kullanılabilecek en başarılı tahmini gerçekleştiren algoritmanın belirlenmesi amaçlanmıştır. Bu kapsamda, Gradyan Artırma, Yapay Sinir Ağları, Lojistik Regresyon, Rassal Orman, Karar Ağacı, Destek Vektör Makineleri, K-En Yakın Komşu ve WOE dönüşümleriyle Lojistik Regresyon algoritmaları için modeller kurulmuş ve temerrüde düşen ve temerrüde düşmeyen müşteriler için en iyi sınıflandırma performansı gösteren Gradyan Artırma algoritması olmuştur.

Publisher

European Journal of Science and Technology

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference28 articles.

1. Altan, G., & Demirci, S. (2022). Makine Öğrenmesi ile Nakit Akış Tablosu Üzerinden Kredi Skorlaması: XGBoost Yaklaşımı. Journal of Economic Policy Researches, 9(2), 397-424.

2. Apostolik, R., Donohue, C.,& Went, P., (2009). Foundations of Banking Risk: An Overview of Banking, Banking Risks, and Risk-Based Banking Regulation, Hoboken, New Jersey: John Wiley & Sons, Inc.

3. Barboza, F., Kimura, H., & Altman, E., (2017). Machine learning models and bankruptcy prediction, Expert Systems with Applications 83: 405–417.

4. BDDK, (2012), “Bankaların İç Denetim ve Risk Yönetimi Sistemleri Hakkında Yönetmelik”, https://www.resmigazete.gov.tr/eskiler/2012/06/20120628-17.htm (Erişim Tarihi: 24 Haziran 2020).

5. Bell, J., (2014), Machine Learning Hands-On for Developers and Technical Professionals, John Wiley & Sons, Inc., Indianapolis, Indiana.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3