Publisher
European Journal of Science and Technology
Reference47 articles.
1. Ackermann, M. R., Martens, M., Raupach, C., Swierkot, K., Lammersen, C. ve Sohler, C. (2012). StreamKM++: A clustering algorithm for data streams. J. Exp. Algorithmics, 17, 2.1-2.30. doi:10.1145/2133803.2184450
2. Aggarwal, C. C. (2010). Data Streams: An Overview and Scientific Applications. In M. M. Gaber (Ed.), Scientific Data Mining and Knowledge Discovery: Principles and Foundations (pp. 377-397). Berlin, Heidelberg: Springer Berlin Heidelberg.
3. Aggarwal, C. C., Han, J., Wang, J. ve Yu, P. S. (2003). A framework for clustering evolving data streams. Paper presented at the Proceedings of the 29th international conference on Very large data bases - Volume 29, Berlin, Germany.
4. Ahmed, M. (2019). Buffer-based Online Clustering for Evolving Data Stream. Information Sciences. doi:https://doi.org/10.1016/j.ins.2019.03.022
5. AlNuaimi, N., Masud, M. M., Serhani, M. A. ve Zaki, N. (2019). Streaming feature selection algorithms for big data: A survey. Applied Computing and Informatics. doi:https://doi.org/10.1016/j.aci.2019.01.001