Derin Öğrenme ile Alzheimer Hastalığı Teşhisi İçin Model Önerisi

Author:

ÖZKAYA Anıl1,CEBECİ Ufuk1

Affiliation:

1. İSTANBUL TEKNİK ÜNİVERSİTESİ

Abstract

Alzheimer's disease is one of the greatest health problems of our time. Since there is no cure, it is necessary to diagnose the disease in the early stages and to apply preventive treatments. However, early diagnosis of the disease is very difficult, so most people can be diagnosed after significant and irreversible effects occur. Various studies are carried out by researchers around the world for the early diagnosis of the disease. Deep learning has recently gained importance in the early diagnosis of Alzheimer's disease. With the use of models created using deep learning, the success of early diagnosis has reached high levels. In this study, the stages of Alzheimer's disease and the changes that occur were examined. A literature review was conducted for various techniques used in the diagnosis of Alzheimer's and the use of imaging techniques in the early diagnosis of Alzheimer's was investigated. Due to its widespread use, the MRI technique has been emphasized, and mostly studies using MRI have been examined. Concepts used in deep learning are explained, innovations and results are presented. The architectures used in deep learning and the innovations they bring to this field are revealed, and deep learning models that have been created and tested in current studies are examined. The innovations and success rates brought by various studies have been revealed. Efforts have been made to develop a fast, efficient and successful model that provides ease of use. For this, the scheduler structure, MONAI framework, Data loader structure and various techniques are presented with simple use. Also, the model is optimized to run smoothly on Google Colab. In addition, the tools in the FSL library, which are very important in preprocessing, were studied and optimal parameters were found for the "Bias field and Neck Clean Up", "Standard Brain Extraction Using BET2" and "Robust Brain Center Estimation" tools. By using this library, optimal brain images can be obtained for any model. The DenseNet121 model was used as a basis in the model and it was presented in a structure that can be easily changed. The model can directly use 3D MR images, thus preventing the loss of various spatial information.

Publisher

European Journal of Science and Technology

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3