Modification of the Pre-Processing Stage of a Traffi Sign Recognition System Taking into Account the Characteristics of the Subject Area

Author:

Pchelintsev S. Yu.1

Affiliation:

1. Tambov State University named after G.R. Derzhavin

Abstract

Traffic sign recognition systems require a high level of responsiveness and accuracy with limited use of computing resources. The process of image pre-processing precedes the process of directly recognizing images, therefore, the recognition results depend on its effectiveness. When conducting pre-processing, it is important to take into account the features of the subject area, within which recognition is performed. The article discusses the process of pre-processing and preparing images in the context of creating a system for recognizing road signs. The main problems that arise during the operation of such a system are identified. Their solutions are proposed. Own combination of these solutions allowed us to create a new system for recognizing road signs, which gives a gain in processing speed by cutting off images of no interest before entering the classifier, and also taking into account the peculiarities of operation in an urban environment – more difficult conditions compared with recognition of road signs on tracks or on artificially created training grounds.

Publisher

Novosibirsk State University of Economics and Management - NSUEM

Reference16 articles.

1. Belyh E.A. Obuchenie kaskadov Haara // Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mehanika. Informatika. 2017. Vyp. 1 (22). P. 41–53.

2. Bychkov S.S. Klassifikacija metodov raspoznavanija dorozhnyh znakov po videoposledovatel’nosti // Reshetnevskie chtenija. 2017. № 21-2. P. 313–314.

3. Gonsales R., Vuds R. Cifrovaja obrabotka izobrazhenij. M.: Tehnosfera, 2012. 1104 p.

4. Elizarov D.A. Razrabotka sistemy raspoznavanija dorozhnyh znakov // Omskij nauchnyj vestnik. 2017. № 4 (154). P. 120–123.

5. Kurbatova E.E. Kombinirovannyj algoritm vydelenija konturov ob#ektov interesa v monitoringovyh sistemah // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013. № 2 (1). P. 60–65.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3