Typological Grouping Based on Decomposition of Probability Distributions Mixtures

Author:

Ismaiylova Yu. N.1,Khrushchev S. E.1

Affiliation:

1. Novosibirsk State University of Economics and Management

Abstract

A mixture of probability distributions is a mathematical model that allows to describe heterogeneous data. The task of separating mixtures or decomposition is the task of estimating the unknown parameters of miscible distributions. Despite the adequacy of the description of heterogeneous data, the decomposition of mixtures is a separate problem, due to the large number of parameters to be evaluated. The article carries out historical periodization,systematization, and a critical comparative analysis of existing methods and algorithms for decomposition of mixtures of probability distributions, identifies the possibilities and limitations of their application for the analysis of real populations. Based on existing algorithms, a method for separating mixtures of an arbitrary known number of probability distributions and a further typological grouping of real socio-economic aggregates is proposed. Unlike existing methods, a method for calculating threshold values to determine the boundaries of types and the number of components of the mixture, in cases where it is unknown, is proposed. Based on the proposed methodology, a typology of the subjects of the Russian Federation by the level of unemployment in the Russian Federation is carried out.

Publisher

Novosibirsk State University of Economics and Management - NSUEM

Reference14 articles.

1. Aitkin M., Aitkin I. Efficient computation of maximum likelihood estimates in mixture distributions, with reference to overdispersion and variance components. In Proceedings XVIIth International Biometric Conference, Hamilton, Ontario. Alexandria, Virginia: Biometric Society. 1994. P. 123–138.

2. Akaike Н. Information theory and an extension of the maximum likelihood principle. in: B.N. Petrov and F. Csake (eds.) Second International Symposium on Information Theory. Akademiai Kiado, Budapest, 1973. P. 267–281.

3. Akaike Н. A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Statist. Math. 1978.Vol. 30A. P. 9–14.

4. Blischke W.R. Estimating the parameters of mixtures of binomial distributions. J. Amer. Statist. Assoc. 1964 – 59. № 306. P. 510–528.

5. Blischke W.R. Moment estimators for the parameters of a mixture of two binomial distributions. Ann. Math. Stat. 1962 – 33. № 2. P. 444–454.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3