In silico investigation of potential COVID-19-associated microRNA signatures

Author:

Asfa Seyedehsadaf1ORCID,Ökmen Didem1ORCID,Pavlopoulou Athanasia2ORCID

Affiliation:

1. DOKUZ EYLÜL ÜNİVERSİTESİ, İZMİR ULUSLARARASI BİYOTIP VE GENOM ENSTİTÜSÜ, GENOM BİLİMLERİ VE MOLEKÜLER BİYOTEKNOLOJİ ANABİLİM DALI

2. DOKUZ EYLÜL ÜNİVERSİTESİ, İZMİR ULUSLARARASI BİYOTIP VE GENOM ENSTİTÜSÜ

Abstract

Purpose: The global pandemic COVID-19, caused by the coronavirus SARS-CoV-2, is persistent despite the increasing vaccination rates, with new cases being reported per week. MicroRNAs, that is, non-coding RNA species that regulate gene expression at the post-transcriptional level, play a pivotal role in the SARS-CoV-2 life cycle, pathophysiology and host’s anticoronaviral responses. The objective of this study was the in silico discovery of functionally associated miRNAs that likely co-regulate COVID-19-related genes Materials and Methods: In the present study, an integrative bioinformatics approach was employed, including database searching, gene set enrichment analysis, network-based and microRNA target prediction methods, towards the discovery of epigenetic determinants of COVID-19. Results: An intricate microRNA-target gene network was constructed, and a set of 8 highly interacting microRNAs, that potentially co-target and co-regulate key COVID-19-related genes, was detected. These miRNAs and their corresponding genes are likely involved in the host’s response to SARS-CoV-2 infection. Conclusion: The 8 functionally associated miRNAs could constitute a signature for COVID-19 diagnosis.

Publisher

Cukurova Medical Journal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3