Bilgisayar Destekli İlaç Keşfi Üzerine Bakışlar

Author:

KIRBOĞA Kevser Kübra1,KÜÇÜKSİLLE Ecir2

Affiliation:

1. BILECIK SEYH EDEBALI UNIVERSITY

2. SULEYMAN DEMIREL UNIVERSITY

Abstract

The drug development and discovery process are challenging, take 15 to 20 years, and require approximately 1.5-2 billion dollars, from the critical selection of the target molecule to post-clinical market application. Several computational drug design methods identify and optimize target biologically lead compounds. Given the complexity and cost of the drug discovery process in recent years, computer-assisted drug discovery (CADD) has spread over a broad spectrum. CADD methods support the discovery of target molecules, optimization of small target molecules, analysis, and development processes faster and less costly. These methods can be classified into structure-based (SBDD) and ligand-based (LBDD). SBDD begins the development process by focusing on the knowledge of the three-dimensional structure of the biological target. Finally, this review article provides an overview of the details, purposes, uses in developing drugs, general workflows, tools used, limitations, and future of CADD methods, including the SBDD and LBDD processes that have become an integral part of pharmaceutical companies and academic research.

Publisher

Dicle University

Reference64 articles.

1. A. S. Rifaioglu, H. Atas, M. J. Martin, R. Cetin-Atalay, V. Atalay, and T. Doğan, "Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases," Briefings in Bioinformatics, vol. 20, no. 5, pp. 1878-1912, 2018, doi: 10.1093/bib/bby061.

2. B. S. Robinson, K. A. Riccardi, Y. F. Gong, Q. Guo, D. A. Stock et al., "BMS-232632, a highly potent human immunodeficiency virus protease inhibitor that can be used in combination with other available antiretroviral agents," Antimicrobial agents and chemotherapy, vol. 44, no. 8, pp. 2093-2099, 2000.

3. Z. Chen, Y. Li, E. Chen, D. L. Hall, P. L. Darke, C. Culberson, J. A. Shafer, L. C. Kuo, "Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases," Journal of Biological Chemistry, vol. 269, no. 42, pp. 26344-26348, 1994.

4. D. J. Kempf, K. C. Marsh, J. F. Denissen, E. McDonald, S. Vasavanonda, C. A. Flentge, B. E. Green, L. Fino, C. H. Park, X. P. Kong "ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans," Proceedings of the National Academy of Sciences, vol. 92, no. 7, pp. 2484-2488, 1995.

5. A. Krohn, S. Redshaw, J. C. Ritchie, B. J. Graves, and M. H. Hatada, "Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)-hydroxyethylamine isostere," Journal of medicinal chemistry, vol. 34, no. 11, pp. 3340-3342, 1991.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3